Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Phosphate in Virulence of Candida albicans and Candida glabrata.

Identifieur interne : 000069 ( Main/Exploration ); précédent : 000068; suivant : 000070

Phosphate in Virulence of Candida albicans and Candida glabrata.

Auteurs : Julia R. Köhler [États-Unis] ; Maikel Acosta-Zaldívar ; Wanjun Qi

Source :

RBID : pubmed:32224872

Abstract

Candida species are the most commonly isolated invasive human fungal pathogens. A role for phosphate acquisition in their growth, resistance against host immune cells, and tolerance of important antifungal medications is becoming apparent. Phosphorus is an essential element in vital components of the cell, including chromosomes and ribosomes. Producing the energy currency of the cell, ATP, requires abundant inorganic phosphate. A comparison of the network of regulators and effectors that controls phosphate acquisition and intracellular distribution, the PHO regulon, between the model yeast Saccharomyces cerevisiae, a plant saprobe, its evolutionarily close relative C. glabrata, and the more distantly related C. albicans, highlights the need to coordinate phosphate homeostasis with adenylate biosynthesis for ATP production. It also suggests that fungi that cope with phosphate starvation as they invade host tissues, may link phosphate acquisition to stress responses as an efficient mechanism of anticipatory regulation. Recent work indicates that connections among the PHO regulon, Target of Rapamycin Complex 1 signaling, oxidative stress management, and cell wall construction are based both in direct signaling links, and in the provision of phosphate for sufficient metabolic intermediates that are substrates in these processes. Fundamental differences in fungal and human phosphate homeostasis may offer novel drug targets.

DOI: 10.3390/jof6020040
PubMed: 32224872
PubMed Central: PMC7344514


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Phosphate in Virulence of
<i>Candida albicans</i>
and
<i>Candida glabrata</i>
.</title>
<author>
<name sortKey="Kohler, Julia R" sort="Kohler, Julia R" uniqKey="Kohler J" first="Julia R" last="Köhler">Julia R. Köhler</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA 02115, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA 02115</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Acosta Zaldivar, Maikel" sort="Acosta Zaldivar, Maikel" uniqKey="Acosta Zaldivar M" first="Maikel" last="Acosta-Zaldívar">Maikel Acosta-Zaldívar</name>
</author>
<author>
<name sortKey="Qi, Wanjun" sort="Qi, Wanjun" uniqKey="Qi W" first="Wanjun" last="Qi">Wanjun Qi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32224872</idno>
<idno type="pmid">32224872</idno>
<idno type="doi">10.3390/jof6020040</idno>
<idno type="pmc">PMC7344514</idno>
<idno type="wicri:Area/Main/Corpus">000098</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000098</idno>
<idno type="wicri:Area/Main/Curation">000098</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000098</idno>
<idno type="wicri:Area/Main/Exploration">000098</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Phosphate in Virulence of
<i>Candida albicans</i>
and
<i>Candida glabrata</i>
.</title>
<author>
<name sortKey="Kohler, Julia R" sort="Kohler, Julia R" uniqKey="Kohler J" first="Julia R" last="Köhler">Julia R. Köhler</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA 02115, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA 02115</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Acosta Zaldivar, Maikel" sort="Acosta Zaldivar, Maikel" uniqKey="Acosta Zaldivar M" first="Maikel" last="Acosta-Zaldívar">Maikel Acosta-Zaldívar</name>
</author>
<author>
<name sortKey="Qi, Wanjun" sort="Qi, Wanjun" uniqKey="Qi W" first="Wanjun" last="Qi">Wanjun Qi</name>
</author>
</analytic>
<series>
<title level="j">Journal of fungi (Basel, Switzerland)</title>
<idno type="eISSN">2309-608X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<i>Candida</i>
species are the most commonly isolated invasive human fungal pathogens. A role for phosphate acquisition in their growth, resistance against host immune cells, and tolerance of important antifungal medications is becoming apparent. Phosphorus is an essential element in vital components of the cell, including chromosomes and ribosomes. Producing the energy currency of the cell, ATP, requires abundant inorganic phosphate. A comparison of the network of regulators and effectors that controls phosphate acquisition and intracellular distribution, the PHO regulon, between the model yeast Saccharomyces cerevisiae, a plant saprobe, its evolutionarily close relative
<i>C. glabrata</i>
, and the more distantly related
<i>C. albicans</i>
, highlights the need to coordinate phosphate homeostasis with adenylate biosynthesis for ATP production. It also suggests that fungi that cope with phosphate starvation as they invade host tissues, may link phosphate acquisition to stress responses as an efficient mechanism of anticipatory regulation. Recent work indicates that connections among the PHO regulon, Target of Rapamycin Complex 1 signaling, oxidative stress management, and cell wall construction are based both in direct signaling links, and in the provision of phosphate for sufficient metabolic intermediates that are substrates in these processes. Fundamental differences in fungal and human phosphate homeostasis may offer novel drug targets.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32224872</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2309-608X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2020</Year>
<Month>Mar</Month>
<Day>26</Day>
</PubDate>
</JournalIssue>
<Title>Journal of fungi (Basel, Switzerland)</Title>
<ISOAbbreviation>J Fungi (Basel)</ISOAbbreviation>
</Journal>
<ArticleTitle>Phosphate in Virulence of
<i>Candida albicans</i>
and
<i>Candida glabrata</i>
.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E40</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/jof6020040</ELocationID>
<Abstract>
<AbstractText>
<i>Candida</i>
species are the most commonly isolated invasive human fungal pathogens. A role for phosphate acquisition in their growth, resistance against host immune cells, and tolerance of important antifungal medications is becoming apparent. Phosphorus is an essential element in vital components of the cell, including chromosomes and ribosomes. Producing the energy currency of the cell, ATP, requires abundant inorganic phosphate. A comparison of the network of regulators and effectors that controls phosphate acquisition and intracellular distribution, the PHO regulon, between the model yeast Saccharomyces cerevisiae, a plant saprobe, its evolutionarily close relative
<i>C. glabrata</i>
, and the more distantly related
<i>C. albicans</i>
, highlights the need to coordinate phosphate homeostasis with adenylate biosynthesis for ATP production. It also suggests that fungi that cope with phosphate starvation as they invade host tissues, may link phosphate acquisition to stress responses as an efficient mechanism of anticipatory regulation. Recent work indicates that connections among the PHO regulon, Target of Rapamycin Complex 1 signaling, oxidative stress management, and cell wall construction are based both in direct signaling links, and in the provision of phosphate for sufficient metabolic intermediates that are substrates in these processes. Fundamental differences in fungal and human phosphate homeostasis may offer novel drug targets.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Köhler</LastName>
<ForeName>Julia R</ForeName>
<Initials>JR</Initials>
<AffiliationInfo>
<Affiliation>Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA 02115, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Acosta-Zaldívar</LastName>
<ForeName>Maikel</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Qi</LastName>
<ForeName>Wanjun</ForeName>
<Initials>W</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>03</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>J Fungi (Basel)</MedlineTA>
<NlmUniqueID>101671827</NlmUniqueID>
<ISSNLinking>2309-608X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">PHO regulon</Keyword>
<Keyword MajorTopicYN="N">Target of Rapamycin</Keyword>
<Keyword MajorTopicYN="N">antifungal</Keyword>
<Keyword MajorTopicYN="N">cell wall</Keyword>
<Keyword MajorTopicYN="N">drug target</Keyword>
<Keyword MajorTopicYN="N">metabolomics</Keyword>
<Keyword MajorTopicYN="N">oxidative stress resistance</Keyword>
<Keyword MajorTopicYN="N">virulence</Keyword>
</KeywordList>
<CoiStatement>The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>03</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>03</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>03</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>4</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>4</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32224872</ArticleId>
<ArticleId IdType="pii">jof6020040</ArticleId>
<ArticleId IdType="doi">10.3390/jof6020040</ArticleId>
<ArticleId IdType="pmc">PMC7344514</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2014 Apr 07;9(4):e94285</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24710330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transplant Rev (Orlando). 2014 Jul;28(3):126-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24685370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2018 Feb;14(2):135-141</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29227471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2007 Dec;9(12):2938-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17645752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2009 Feb;46(2):210-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19032986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Feb;47(4):1163-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12581367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2006 Mar;6(2):171-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16487340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2004;5(7):230</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15239821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2013 Nov 15;208(10):1705-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23904289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1998 Nov;30(4):895-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10094636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Jun 13;114(24):6346-6351</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28566496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2009 Feb;5(2):e1000294</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19197361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2012 Jul;11(7):916-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22581526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2001 Dec;21(23):7901-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11689683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2005 Apr;56(2):397-415</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15813733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Physiol Pharmacol. 1977 Feb;55(1):48-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">843990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Nov 03;6:36055</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27808111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antibiot (Tokyo). 1975 Oct;28(10):727-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1102509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Microbiol Rev. 1999 Jan;12(1):80-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9880475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biosci. 2014 Jun;39(3):525-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24845516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6746-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1495962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2020 Mar 17;11(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32184254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mSphere. 2017 Aug 2;2(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28776040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Jan 08;6(1):e1000713</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20072605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2019 Jan;211(1):277-288</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30463870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2015 Feb 11;6:118</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25717325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2016 May 20;352(6288):986-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27080106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Res Microbiol. 1999 Apr;150(3):199-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10229949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2019 Apr 8;10(1):1607</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30962448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014;5:3101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24476960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):E5336-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26351691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2016 Sep 1;27(17):2784-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27385340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2007 Mar;63(6):1606-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17367383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 Dec;5(12):e1000783</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20041210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2008 Jun;68(6):1583-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18433446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Sep 5;289(36):25010-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25063813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Dec;189(4):1177-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jan 4;45(D1):D592-D596</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27738138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antibiot (Tokyo). 1978 Jun;31(6):539-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AMA Arch Derm Syphilol. 1954 Jul;70(1):49-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13170819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1996 Nov;16(11):6524-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8887681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D667-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22064862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Res. 2017 Oct;203:10-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28754203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2012 Aug;12(5):534-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22449018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2003 Jul;43(4):225-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12740714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Dis Child. 1977 Oct;52(10):747-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">337908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1996 Oct;21(10):383-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8918192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2010 Nov;186(3):885-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20739710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1996 Jan;7(1):25-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8741837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2012 Aug 1;445(3):413-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22587366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Dec;11(12):4309-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11102525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2001 Dec;12(12):4103-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11739804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2890-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20133652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2016 Jan 07;12(1):e1005295</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26742105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2011 Jun 24;42(6):826-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21700227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2019 Mar;27(3):219-230</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30509563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Toxicol Pharmacol. 2003 Dec;15(1):19-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21782675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2015 Oct;98(2):384-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26173379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2017 May 09;6:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28485712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2015 Apr;24:1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25589044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Immunol. 2014 Sep 19;5:448</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25285096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2014 Dec;14(8):1249-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25331172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2009 Jun;182(2):471-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19332882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2014 Dec 1;127(Pt 23):5093-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25315834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2014 Jul;82(7):2697-712</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24711572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2013 Nov;59(4):197-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24114446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2009 Mar;8(3):373-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19151328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Nov 22;288(47):33939-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24114876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2015 Dec;15(8):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26472755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2008 May;32(3):461-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18248418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1985 Nov;164(2):964-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3902805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2019 Mar;111(3):604-620</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30507002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2017 Feb 15;36(4):397-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28096180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2002 Dec;46(5):1319-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12453218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Oral Biol. 1980;25(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6996654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2015 Apr 30;6:402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25983732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microorganisms. 2017 Aug 22;5(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28829379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Lipid Res. 2005 Mar-May;44(2-3):125-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15893380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 1969 Mar 20;280(12):638-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5764842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 Jul 07;7:1062</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27458452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2012 Mar;190(3):885-929</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22419079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2011 Dec;10(12):1618-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21984707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Kidney Int. 2004 Jan;65(1):1-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14675031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bioenerg Biomembr. 1993 Oct;25(5):483-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8132488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2018 Jun 21;14(6):e1007021</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29928051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2001 Jun;69(6):3939-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11349062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2018 Jul 30;14(7):e1007076</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30059535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2016 Apr 7;532(7597):64-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27027296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Apr 24;324(5926):513-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19390046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virulence. 2014;5(8):786-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25483775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Biol. 2014 Jan 1;217(Pt 1):144-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24353214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Pharmacol Chemother. 1968 May;33(1):72-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5301731</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Acosta Zaldivar, Maikel" sort="Acosta Zaldivar, Maikel" uniqKey="Acosta Zaldivar M" first="Maikel" last="Acosta-Zaldívar">Maikel Acosta-Zaldívar</name>
<name sortKey="Qi, Wanjun" sort="Qi, Wanjun" uniqKey="Qi W" first="Wanjun" last="Qi">Wanjun Qi</name>
</noCountry>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Kohler, Julia R" sort="Kohler, Julia R" uniqKey="Kohler J" first="Julia R" last="Köhler">Julia R. Köhler</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000069 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000069 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32224872
   |texte=   Phosphate in Virulence of Candida albicans and Candida glabrata.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32224872" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020